DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the models also.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses reinforcement discovering to boost thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying feature is its reinforcement learning (RL) step, which was utilized to improve the design's reactions beyond the basic pre-training and wiki.rolandradio.net tweak process. By incorporating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately improving both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, implying it's equipped to break down complex inquiries and factor through them in a detailed way. This directed reasoning process permits the design to produce more precise, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured actions while focusing on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation design that can be integrated into numerous workflows such as representatives, sensible thinking and information analysis jobs.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion criteria, enabling effective inference by routing questions to the most relevant expert "clusters." This technique allows the model to concentrate on various problem domains while maintaining total efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent harmful content, and examine models against key safety criteria. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, create a limitation increase request and connect to your account team.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Establish consents to use guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous content, and examine models against key safety criteria. You can carry out safety measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic circulation includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the last outcome. However, systemcheck-wiki.de if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 model.
The design detail page supplies important details about the model's abilities, pricing structure, and implementation standards. You can discover detailed usage instructions, including sample API calls and code bits for integration. The design supports different text generation tasks, including material development, code generation, and question answering, using its reinforcement finding out optimization and CoT reasoning capabilities.
The page also consists of deployment choices and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, choose Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Number of circumstances, go into a variety of circumstances (in between 1-100).
6. For example type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and settings, including virtual personal cloud (VPC) networking, service function authorizations, and file encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you may desire to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the model.
When the release is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive user interface where you can explore various triggers and change model specifications like temperature and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For example, material for inference.
This is an excellent way to explore the design's thinking and text generation abilities before incorporating it into your applications. The play area offers instant feedback, helping you comprehend how the design responds to numerous inputs and letting you fine-tune your prompts for optimum results.
You can quickly evaluate the model in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends out a request to generate text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two convenient methods: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the method that best matches your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser shows available models, with details like the service provider name and design abilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card reveals essential details, including:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), showing that this model can be registered with Amazon Bedrock, allowing you to utilize Amazon Bedrock APIs to conjure up the model
5. Choose the model card to see the design details page.
The model details page includes the following details:
- The model name and provider details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of essential details, such as:
- Model description. - License details.
- Technical specifications.
- Usage guidelines
Before you release the model, it's advised to evaluate the design details and license terms to verify compatibility with your usage case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the instantly generated name or create a custom one.
- For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable instance types and counts is crucial for expense and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the model.
The release procedure can take a number of minutes to finish.
When release is complete, your endpoint status will change to InService. At this moment, the design is ready to accept inference requests through the endpoint. You can monitor the implementation progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is complete, you can invoke the model using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:
Clean up
To prevent undesirable charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you released the design utilizing Amazon Bedrock Marketplace, complete the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments. - In the Managed implementations section, locate the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the appropriate implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies develop ingenious options using AWS services and sped up calculate. Currently, he is focused on developing methods for fine-tuning and enhancing the inference efficiency of big language designs. In his leisure time, Vivek delights in treking, watching movies, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing services that help customers accelerate their AI journey and unlock service worth.