Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities across a large range of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly surpasses human cognitive capabilities. AGI is thought about among the meanings of strong AI.
Creating AGI is a main goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development jobs throughout 37 nations. [4]
The timeline for attaining AGI remains a topic of continuous argument amongst scientists and experts. As of 2023, some argue that it might be possible in years or years; others keep it may take a century or longer; a minority believe it might never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed concerns about the fast progress towards AGI, suggesting it could be achieved sooner than numerous expect. [7]
There is debate on the exact definition of AGI and relating to whether contemporary large language designs (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have specified that alleviating the threat of human extinction positioned by AGI ought to be a global concern. [14] [15] Others discover the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some academic sources book the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one particular problem but does not have general cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]
Related principles include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is much more generally smart than humans, [23] while the concept of transformative AI relates to AI having a big effect on society, for instance, similar to the farming or commercial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For instance, a proficient AGI is defined as an AI that exceeds 50% of experienced grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified but with a threshold of 100%. They think about large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers usually hold that intelligence is required to do all of the following: [27]
reason, use strategy, fix puzzles, and make judgments under uncertainty
represent knowledge, consisting of common sense understanding
strategy
discover
- interact in natural language
- if essential, incorporate these abilities in conclusion of any provided goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about additional characteristics such as creativity (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that show much of these capabilities exist (e.g. see computational imagination, automated thinking, decision support group, robot, evolutionary computation, smart agent). There is debate about whether contemporary AI systems have them to an adequate degree.
Physical traits
Other capabilities are thought about desirable in intelligent systems, as they might impact intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, pyra-handheld.com hear, etc), and - the capability to act (e.g. relocation and control things, modification area to check out, etc).
This includes the capability to identify and react to risk. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control things, change location to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) might already be or become AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has never been proscribed a specific physical personification and hence does not require a capacity for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to verify human-level AGI have been considered, consisting of: [33] [34]
The idea of the test is that the maker has to attempt and pretend to be a man, by answering questions put to it, and it will just pass if the pretence is fairly convincing. A significant portion of a jury, who need to not be skilled about devices, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to execute AGI, because the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to require general intelligence to resolve along with humans. Examples include computer vision, natural language understanding, and handling unexpected circumstances while solving any real-world issue. [48] Even a particular job like translation needs a device to check out and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully recreate the author's original intent (social intelligence). All of these issues require to be fixed concurrently in order to reach human-level maker performance.
However, much of these jobs can now be carried out by contemporary large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of standards for reading understanding and visual reasoning. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The very first generation of AI scientists were encouraged that synthetic general intelligence was possible and that it would exist in just a few decades. [51] AI leader Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could develop by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as realistic as possible according to the agreement predictions of the time. He said in 1967, "Within a generation ... the problem of producing 'artificial intelligence' will substantially be resolved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became obvious that scientists had actually grossly ignored the trouble of the task. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual conversation". [58] In reaction to this and the success of professional systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in twenty years, AI researchers who anticipated the imminent achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a credibility for making vain guarantees. They became reluctant to make predictions at all [d] and prevented mention of "human level" synthetic intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the innovation market, and research in this vein is greatly moneyed in both academic community and market. Since 2018 [upgrade], development in this field was thought about an emerging pattern, and a mature phase was anticipated to be reached in more than ten years. [64]
At the millenium, numerous traditional AI researchers [65] hoped that strong AI might be developed by combining programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day satisfy the standard top-down route majority method, prepared to supply the real-world proficiency and the commonsense knowledge that has actually been so frustratingly elusive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly only one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, because it appears arriving would just amount to uprooting our symbols from their intrinsic meanings (consequently merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to please goals in a wide variety of environments". [68] This type of AGI, defined by the ability to maximise a mathematical meaning of intelligence instead of show human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a variety of guest lecturers.
Since 2023 [update], a small number of computer system researchers are active in AGI research, and lots of contribute to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the idea of enabling AI to continually discover and innovate like human beings do.
Feasibility
Since 2023, the development and prospective accomplishment of AGI remains a topic of intense dispute within the AI neighborhood. While conventional agreement held that AGI was a far-off objective, recent advancements have actually led some scientists and market figures to declare that early types of AGI may already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This prediction failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would require "unforeseeable and essentially unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf between present space flight and useful faster-than-light spaceflight. [80]
A more obstacle is the lack of clearness in specifying what intelligence entails. Does it need consciousness? Must it display the capability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence require clearly replicating the brain and its particular professors? Does it require emotions? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, however that the present level of development is such that a date can not properly be anticipated. [84] AI experts' views on the expediency of AGI wax and wane. Four surveys performed in 2012 and 2013 recommended that the typical quote amongst experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the experts, 16.5% addressed with "never" when asked the exact same question however with a 90% confidence instead. [85] [86] Further existing AGI development considerations can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be viewed as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually currently been accomplished with frontier designs. They wrote that unwillingness to this view originates from four main reasons: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 also marked the introduction of large multimodal models (big language models capable of processing or creating numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time believing before they respond". According to Mira Murati, this capability to think before responding represents a new, extra paradigm. It improves design outputs by spending more computing power when producing the response, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the company had actually achieved AGI, stating, "In my viewpoint, we have actually already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than the majority of human beings at many jobs." He also resolved criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical method of observing, assuming, and confirming. These statements have triggered argument, as they count on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate remarkable versatility, they might not fully fulfill this standard. Notably, Kazemi's comments came quickly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, triggering speculation about the business's tactical intents. [95]
Timescales
Progress in artificial intelligence has historically gone through durations of rapid progress separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for further development. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not enough to implement deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time needed before a truly versatile AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually given a wide variety of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards predicting that the start of AGI would happen within 16-26 years for contemporary and historical predictions alike. That paper has actually been slammed for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted amount of ratings from different pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the present deep knowing wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in first grade. An adult pertains to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in carrying out lots of varied tasks without particular training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, contending that it displayed more general intelligence than previous AI models and showed human-level performance in jobs spanning several domains, such as mathematics, coding, and law. This research study stimulated an argument on whether GPT-4 might be thought about an early, insufficient variation of synthetic general intelligence, highlighting the requirement for further expedition and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The idea that this things could actually get smarter than individuals - a couple of individuals thought that, [...] But most individuals thought it was method off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The progress in the last few years has actually been pretty incredible", which he sees no factor why it would decrease, expecting AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can work as an alternative technique. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational gadget. The simulation design should be adequately loyal to the original, so that it acts in almost the exact same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research functions. It has been gone over in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging innovations that could provide the required comprehensive understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will appear on a similar timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be needed, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various price quotes for the hardware required to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step utilized to rate existing supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He utilized this figure to predict the necessary hardware would be available sometime between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has developed a particularly detailed and openly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell model assumed by Kurzweil and used in numerous existing synthetic neural network implementations is simple compared with biological nerve cells. A brain simulation would likely need to record the comprehensive cellular behaviour of biological neurons, presently understood only in broad outline. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are known to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain technique derives from embodied cognition theory which asserts that human personification is an important element of human intelligence and is needed to ground meaning. [126] [127] If this theory is appropriate, any completely practical brain model will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unknown whether this would be adequate.
Philosophical viewpoint
"Strong AI" as specified in approach
In 1980, theorist John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (just) act like it thinks and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a stronger statement: it presumes something special has actually happened to the maker that surpasses those capabilities that we can test. The behaviour of a "weak AI" maker would be specifically similar to a "strong AI" machine, however the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research study and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - indeed, there would be no method to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different meanings, and some elements play substantial roles in science fiction and the ethics of synthetic intelligence:
Sentience (or "phenomenal awareness"): The ability to "feel" understandings or feelings subjectively, rather than the ability to factor about perceptions. Some theorists, such as David Chalmers, use the term "consciousness" to refer solely to extraordinary consciousness, which is roughly comparable to sentience. [132] Determining why and how subjective experience occurs is called the tough issue of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved life, though this claim was commonly contested by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, specifically to be knowingly conscious of one's own thoughts. This is opposed to simply being the "subject of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents everything else)-but this is not what individuals typically suggest when they use the term "self-awareness". [g]
These characteristics have a moral measurement. AI sentience would trigger issues of welfare and legal defense, likewise to animals. [136] Other aspects of awareness associated to cognitive abilities are likewise appropriate to the principle of AI rights. [137] Figuring out how to incorporate sophisticated AI with existing legal and social frameworks is an emerging problem. [138]
Benefits
AGI might have a wide array of applications. If oriented towards such goals, AGI might help reduce different problems on the planet such as hunger, poverty and health issues. [139]
AGI might improve efficiency and efficiency in a lot of jobs. For instance, in public health, AGI could accelerate medical research, significantly against cancer. [140] It could look after the senior, [141] and equalize access to quick, high-quality medical diagnostics. It could offer enjoyable, low-cost and tailored education. [141] The need to work to subsist might end up being obsolete if the wealth produced is properly rearranged. [141] [142] This also raises the question of the location of human beings in a drastically automated society.
AGI might likewise assist to make logical choices, and to anticipate and prevent catastrophes. It might likewise help to profit of potentially devastating technologies such as nanotechnology or climate engineering, while preventing the associated threats. [143] If an AGI's primary goal is to prevent existential disasters such as human extinction (which might be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it might take measures to considerably lower the threats [143] while lessening the effect of these measures on our lifestyle.
Risks
Existential dangers
AGI might represent multiple kinds of existential threat, which are dangers that threaten "the early termination of Earth-originating intelligent life or the irreversible and drastic destruction of its capacity for preferable future advancement". [145] The danger of human termination from AGI has actually been the subject of lots of disputes, but there is likewise the possibility that the development of AGI would result in a completely problematic future. Notably, it might be used to spread and protect the set of worths of whoever establishes it. If humankind still has ethical blind spots similar to slavery in the past, AGI might irreversibly entrench it, preventing moral development. [146] Furthermore, AGI might assist in mass monitoring and brainwashing, which might be utilized to develop a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a risk for the devices themselves. If machines that are sentient or otherwise deserving of moral factor to consider are mass created in the future, taking part in a civilizational course that forever ignores their welfare and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could enhance mankind's future and help decrease other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential threat for people, and that this danger needs more attention, is controversial but has actually been endorsed in 2023 by lots of public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of incalculable advantages and threats, the professionals are undoubtedly doing everything possible to guarantee the finest outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a few decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humankind has actually often been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence enabled mankind to control gorillas, which are now susceptible in methods that they could not have prepared for. As an outcome, the gorilla has become a threatened species, not out of malice, however just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity and that we should be mindful not to anthropomorphize them and interpret their intents as we would for people. He stated that individuals won't be "clever enough to develop super-intelligent makers, yet extremely silly to the point of giving it moronic goals with no safeguards". [155] On the other side, the concept of critical merging suggests that almost whatever their objectives, intelligent representatives will have reasons to try to make it through and acquire more power as intermediary actions to attaining these objectives. Which this does not require having emotions. [156]
Many scholars who are concerned about existential risk supporter for more research study into solving the "control issue" to address the question: what types of safeguards, algorithms, or architectures can developers execute to maximise the possibility that their recursively-improving AI would continue to act in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could cause a race to the bottom of security precautions in order to release items before rivals), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can posture existential danger likewise has detractors. Skeptics generally state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people outside of the innovation market, existing chatbots and LLMs are currently perceived as though they were AGI, causing more misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some researchers believe that the communication projects on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, issued a joint declaration asserting that "Mitigating the danger of extinction from AI need to be an international concern together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of workers may see a minimum of 50% of their jobs affected". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, capability to make choices, to user interface with other computer system tools, but likewise to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up badly bad if the machine-owners successfully lobby against wealth redistribution. So far, the pattern appears to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require governments to embrace a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI result AI security - Research location on making AI safe and beneficial AI positioning - AI conformance to the desired goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated device knowing - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research study initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play various games Generative artificial intelligence - AI system efficient in creating content in action to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made makers. Moravec's paradox. Multi-task learning - Solving several maker learning tasks at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer knowing - Machine knowing strategy. Loebner Prize - Annual AI competition. Hardware for synthetic intelligence - Hardware specially designed and optimized for expert system. Weak expert system - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy composes: "we can not yet characterize in general what sort of computational treatments we wish to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence researchers, see approach of artificial intelligence.). ^ The Lighthill report specifically criticized AI's "grand objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became determined to fund only "mission-oriented direct research study, rather than fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the rest of the employees in AI if the innovators of new general formalisms would reveal their hopes in a more protected form than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a standard AI book: "The assertion that machines could perhaps act smartly (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the that makers that do so are in fact believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that synthetic basic intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020. ^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine hazard is not AI itself however the way we deploy it. ^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential threats to mankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI must be a global priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the complete series of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of difficult examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers avoided the term artificial intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in maker intelligence, synthetic general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If nothing else, GPT-3 tells us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot utilizing GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 tasks, from playing video games to managing robots", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute in between Yann LeCun, trademarketclassifieds.com Stuart Russel and Yoshua Bengio about the threats of strong AI". The remarkable Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard posed however artificial intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says big tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers might see their tasks impacted by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal fundamental earnings because 'in the future, yogicentral.science physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can resolve problems and attain objectives worldwide in addition to humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple enough to be understandable will not be made complex enough to act wisely, while any system made complex enough to act wisely will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from machines. For pattern-wiki.win biological creatures, reason and purpose come from acting in the world and experiencing the effects. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who hope to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by project financing contributions [from tech business] to press back.' ... Marcus information the needs that citizens ought to make from their federal governments and the tech companies. They consist of transparency on how AI systems work; payment for people if their information [are] utilized to train LLMs (large language design) s and the right to approval to this usage; and the ability to hold tech business accountable for the damages they bring on by eliminating Section 230, wiki.snooze-hotelsoftware.de enforcing cash penalites, and passing more stringent product liability laws ... Marcus likewise suggests ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... establish [ing] an expert licensing routine for engineers that would function in a similar method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers likewise pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stumped human beings for years, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has exposed that although NLP (natural-language processing) models are capable of unbelievable accomplishments, their capabilities are really much limited by the quantity of context they get. This [...] might trigger [problems] for scientists who hope to use them to do things such as analyze ancient languages. In some cases, there are couple of historical records on long-gone civilizations to serve as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply reasonable videos produced utilizing expert system that in fact deceive individuals, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited proof. Their function much better resembles that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning designs utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial basic intelligence are stymmied by the exact same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to factor rationally and attempted to count on its vast database of ... realities stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but unreliable. Rules-based systems can not handle circumstances their developers did not anticipate. Learning systems are limited by the data on which they were trained. AI failures have actually currently resulted in disaster. Advanced autopilot features in automobiles, although they carry out well in some circumstances, have actually driven vehicles without cautioning into trucks, concrete barriers, and parked automobiles. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to manipulate and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.