Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
E
evove
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Lenora Ferres
  • evove
  • Issues
  • #1

Closed
Open
Opened Apr 08, 2025 by Lenora Ferres@lenoraferres1
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that utilizes reinforcement discovering to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A key distinguishing function is its support learning (RL) action, which was used to fine-tune the model's responses beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt more successfully to user feedback and objectives, eventually boosting both significance and clearness. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it's geared up to break down complex inquiries and reason through them in a detailed manner. This guided thinking process permits the model to produce more accurate, transparent, and detailed responses. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation model that can be incorporated into different workflows such as agents, sensible reasoning and data analysis tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion specifications, making it possible for effective inference by routing inquiries to the most relevant professional "clusters." This technique permits the model to specialize in different issue domains while maintaining overall efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to simulate the habits and reasoning patterns of the bigger DeepSeek-R1 design, using it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous content, and assess models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop multiple guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limitation increase, produce a limitation increase request and connect to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to introduce safeguards, avoid hazardous content, and assess designs against crucial security requirements. You can execute precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to evaluate user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the model's output, another guardrail check is applied. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 model.

The model detail page supplies necessary details about the model's abilities, prices structure, and execution guidelines. You can find detailed use guidelines, consisting of sample API calls and code bits for integration. The design supports various text generation jobs, consisting of material production, code generation, and question answering, using its reinforcement discovering optimization and CoT reasoning capabilities. The page likewise includes deployment alternatives and licensing details to help you get started with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, choose Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of instances (between 1-100). 6. For Instance type, pick your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and larsaluarna.se facilities settings, including virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For a lot of use cases, the default settings will work well. However, for production implementations, you might want to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start using the design.

When the deployment is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive user interface where you can try out different triggers and change design specifications like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum outcomes. For example, content for reasoning.

This is an excellent method to explore the model's reasoning and text generation capabilities before integrating it into your applications. The play ground supplies instant feedback, helping you comprehend how the design reacts to various inputs and letting you tweak your prompts for optimal results.

You can rapidly test the design in the play ground through the UI. However, to invoke the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends out a demand to generate text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 practical approaches: utilizing the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you choose the method that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design browser displays available designs, with details like the service provider name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals essential details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if suitable), showing that this design can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the design details page.

    The model details page includes the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical .
  • Usage standards

    Before you deploy the design, it's recommended to examine the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the instantly produced name or produce a customized one.
  1. For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of instances (default: 1). Selecting suitable circumstances types and counts is important for expense and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the model.

    The release process can take a number of minutes to finish.

    When release is complete, your endpoint status will alter to InService. At this point, the model is all set to accept inference requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the design utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed implementations section, locate the endpoint you desire to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative services utilizing AWS services and accelerated compute. Currently, he is focused on developing methods for fine-tuning and enhancing the reasoning efficiency of big language models. In his spare time, Vivek takes pleasure in treking, viewing motion pictures, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing options that assist clients accelerate their AI journey and unlock organization worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: lenoraferres1/evove#1