DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled versions of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes support discovering to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential distinguishing function is its support learning (RL) step, which was utilized to fine-tune the design's responses beyond the basic pre-training and tweak process. By including RL, DeepSeek-R1 can adapt more successfully to user feedback and objectives, eventually improving both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, indicating it's equipped to break down complicated inquiries and reason through them in a detailed manner. This directed thinking procedure allows the model to produce more precise, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation model that can be incorporated into different workflows such as agents, sensible thinking and data analysis jobs.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, allowing effective reasoning by routing inquiries to the most pertinent specialist "clusters." This technique enables the design to focus on various problem domains while maintaining general efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective designs to simulate the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as a teacher design.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and examine models against essential safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, create a limit boost request and connect to your account group.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Establish authorizations to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging material, wiki.myamens.com and examine designs against key security requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general circulation includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for reasoning. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 design.
The design detail page offers essential details about the model's abilities, rates structure, and execution standards. You can discover detailed use directions, consisting of sample API calls and code bits for combination. The design supports numerous text generation tasks, consisting of content development, code generation, and concern answering, using its support discovering optimization and CoT reasoning abilities.
The page also includes release options and licensing details to assist you start with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, go into a variety of instances (between 1-100).
6. For example type, pick your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you might desire to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the model.
When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in playground to access an interactive user interface where you can experiment with various triggers and change design parameters like temperature and optimum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For instance, material for inference.
This is an outstanding way to explore the design's reasoning and text generation capabilities before incorporating it into your applications. The playground provides immediate feedback, helping you understand how the model reacts to numerous inputs and letting you fine-tune your prompts for ideal outcomes.
You can quickly check the model in the playground through the UI. However, to conjure up the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up inference specifications, and sends out a request to generate text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free methods: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you choose the method that best matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The design browser shows available designs, with details like the supplier name and design capabilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each model card reveals key details, including:
- Model name
- Provider name
- Task classification (for example, Text Generation).
Bedrock Ready badge (if suitable), suggesting that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the design details page.
The model details page includes the following details:
- The design name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specs.
- Usage guidelines
Before you deploy the design, it's advised to evaluate the design details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the instantly generated name or develop a custom-made one.
- For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of circumstances (default: 1). Selecting suitable circumstances types and counts is crucial for expense and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
- Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to release the model.
The release process can take several minutes to finish.
When release is complete, your endpoint status will alter to InService. At this point, the model is ready to accept reasoning requests through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the deployment is total, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the design is offered in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as revealed in the following code:
Tidy up
To avoid undesirable charges, finish the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments. - In the Managed releases area, find the endpoint you wish to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the correct implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build innovative options using AWS services and accelerated compute. Currently, he is focused on developing methods for fine-tuning and enhancing the reasoning performance of big language designs. In his downtime, Vivek delights in treking, enjoying movies, and trying different cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing options that assist customers accelerate their AI journey and unlock service value.