Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
I
inamoro
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 61
    • Issues 61
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aleisha Baldwinson
  • inamoro
  • Issues
  • #57

Closed
Open
Opened May 31, 2025 by Aleisha Baldwinson@aleishabaldwin
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion parameters to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support finding out to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating feature is its support knowing (RL) step, which was utilized to refine the model's reactions beyond the basic pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, ultimately improving both importance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, suggesting it's geared up to break down intricate questions and factor through them in a detailed way. This directed thinking procedure enables the model to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually captured the market's attention as a versatile text-generation model that can be incorporated into numerous workflows such as representatives, sensible reasoning and information analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, allowing efficient inference by routing questions to the most appropriate specialist "clusters." This method permits the model to specialize in different issue domains while maintaining overall efficiency. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient designs to mimic the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and evaluate models against essential safety criteria. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation boost, create a limitation increase request and connect to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For instructions, see Set up permissions to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging content, and evaluate designs against crucial safety criteria. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model brochure under Foundation designs in the navigation pane. At the time of composing this post, yewiki.org you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.

The design detail page offers important details about the design's abilities, pricing structure, and implementation standards. You can find detailed usage guidelines, consisting of sample API calls and code bits for combination. The different text generation tasks, including material production, code generation, and question answering, using its reinforcement discovering optimization and CoT thinking abilities. The page also consists of implementation choices and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of instances (between 1-100). 6. For example type, select your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure advanced security and facilities settings, consisting of virtual personal cloud (VPC) networking, service function consents, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you might wish to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the deployment is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive interface where you can try out different triggers and change model criteria like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal results. For example, material for reasoning.

This is an outstanding method to explore the model's thinking and text generation abilities before integrating it into your applications. The play ground provides instant feedback, assisting you understand how the model responds to various inputs and letting you tweak your prompts for optimum results.

You can rapidly test the design in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two hassle-free approaches: utilizing the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you pick the technique that finest fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser displays available designs, with details like the company name and design capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the model

    5. Choose the model card to see the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's recommended to review the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the immediately created name or produce a custom-made one.
  1. For example type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of instances (default: 1). Selecting suitable instance types and counts is crucial for cost and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The implementation procedure can take numerous minutes to complete.

    When implementation is complete, your endpoint status will change to InService. At this point, the model is prepared to accept inference demands through the endpoint. You can keep track of the release progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases.
  5. In the Managed deployments area, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the appropriate release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative options using AWS services and sped up calculate. Currently, he is focused on establishing techniques for fine-tuning and optimizing the reasoning efficiency of large language designs. In his totally free time, Vivek delights in hiking, seeing motion pictures, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing services that assist clients accelerate their AI journey and unlock company worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: aleishabaldwin/inamoro#57