Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
I
inamoro
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 61
    • Issues 61
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aleisha Baldwinson
  • inamoro
  • Issues
  • #33

Closed
Open
Opened Apr 07, 2025 by Aleisha Baldwinson@aleishabaldwin
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support learning (RL) to improve reasoning ability. DeepSeek-R1 attains results on par with OpenAI's o1 model on numerous benchmarks, including MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of professionals (MoE) model just recently open-sourced by DeepSeek. This base design is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented variant of RL. The research team likewise carried out knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama models and launched numerous versions of each; these models outshine bigger designs, consisting of GPT-4, on math and coding standards.

[DeepSeek-R1 is] the very first action toward enhancing language model thinking abilities using pure reinforcement knowing (RL). Our goal is to explore the potential of LLMs to establish reasoning capabilities without any monitored data, focusing on their self-evolution through a pure RL process...DeepSeek-R1 ... excels in a wide variety of jobs, including innovative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 demonstrates exceptional performance on tasks needing understanding, significantly outshining DeepSeek-V3 on long-context benchmarks.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They first tried fine-tuning it only with RL, and without any monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have also released. This design shows strong thinking efficiency, however" effective thinking habits, it faces a number of problems. For example, DeepSeek-R1-Zero deals with challenges like bad readability and language mixing."

To address this, the team utilized a short stage of SFT to prevent the "cold start" issue of RL. They gathered several thousand examples of chain-of-thought thinking to utilize in SFT of DeepSeek-V3 before running RL. After the RL process assembled, they then collected more SFT information utilizing rejection sampling, resulting in a dataset of 800k samples. This dataset was used for further fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek examined their model on a variety of thinking, math, and coding benchmarks and compared it to other designs, consisting of Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outperformed all of them on several of the standards, consisting of AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a few days of its release, the LMArena announced that DeepSeek-R1 was ranked # 3 general in the arena and # 1 in coding and mathematics. It was likewise tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django framework co-creator Simon Willison composed about his try outs among the DeepSeek distilled Llama models on his blog:

Each response begins with a ... pseudo-XML tag containing the chain of thought used to assist produce the action. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is dreadful. But the process of getting there was such a fascinating insight into how these new models work.

Andrew Ng's newsletter The Batch wrote about DeepSeek-R1:

DeepSeek is rapidly emerging as a strong home builder of open designs. Not only are these models great entertainers, however their license allows usage of their outputs for surgiteams.com distillation, potentially pushing forward the cutting-edge for language designs (and multimodal models) of all sizes.

The DeepSeek-R1 designs are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering - Generative AI

  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Starting with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you prepared to try out innovative technologies? You can begin building intelligent apps with complimentary Azure app, data, and AI services to decrease upfront expenses. Learn More.

    How could we improve? Take the InfoQ reader study

    Each year, we look for feedback from our readers to assist us enhance InfoQ. Would you mind spending 2 minutes to share your feedback in our short study? Your feedback will straight assist us continuously progress how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of recently's material on InfoQ sent out every Tuesday. Join a community of over 250,000 senior developers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: aleishabaldwin/inamoro#33