Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in
I
inamoro
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 61
    • Issues 61
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Aleisha Baldwinson
  • inamoro
  • Issues
  • #29

Closed
Open
Opened Apr 06, 2025 by Aleisha Baldwinson@aleishabaldwin
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to build, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial identifying function is its support knowing (RL) action, which was used to refine the design's responses beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust more effectively to user feedback and objectives, ultimately boosting both significance and clarity. In addition, forum.altaycoins.com DeepSeek-R1 uses a chain-of-thought (CoT) approach, suggesting it's geared up to break down intricate queries and factor through them in a detailed way. This guided reasoning process permits the model to produce more precise, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation model that can be incorporated into various workflows such as representatives, logical thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion specifications, making it possible for effective inference by routing queries to the most appropriate expert "clusters." This approach permits the model to specialize in different problem domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, trademarketclassifieds.com 14B, and 32B) and Llama (8B and 70B). to a process of training smaller, more effective models to mimic the habits and thinking patterns of the larger DeepSeek-R1 model, using it as an instructor model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent harmful material, and evaluate designs against essential safety criteria. At the time of composing this blog, for pediascape.science DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit increase, develop a limitation increase demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For directions, see Establish consents to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails permits you to present safeguards, avoid hazardous content, and evaluate designs against essential safety criteria. You can execute security measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 design.

The model detail page provides essential details about the design's abilities, prices structure, and execution standards. You can discover detailed use guidelines, including sample API calls and code snippets for integration. The design supports numerous text generation tasks, including content production, code generation, and question answering, using its support discovering optimization and CoT reasoning abilities. The page likewise includes implementation choices and licensing details to help you get started with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to configure the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of instances (in between 1-100). 6. For example type, choose your instance type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure advanced security and infrastructure settings, including virtual personal cloud (VPC) networking, service role consents, and encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the deployment is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive interface where you can explore different triggers and adjust model parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal results. For example, material for inference.

This is an exceptional method to explore the model's thinking and text generation abilities before integrating it into your applications. The playground supplies instant feedback, helping you understand how the model reacts to various inputs and letting you fine-tune your prompts for ideal results.

You can rapidly test the design in the play area through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends out a request to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses two hassle-free techniques: using the user-friendly SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you choose the approach that best matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model browser displays available designs, with details like the company name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals essential details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if relevant), indicating that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to see the design details page.

    The design details page includes the following details:

    - The design name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's recommended to review the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the immediately produced name or produce a custom one.
  1. For Instance type ¸ pick an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting appropriate instance types and counts is important for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the design.

    The deployment process can take a number of minutes to complete.

    When deployment is complete, your endpoint status will alter to InService. At this moment, the design is ready to accept reasoning demands through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is complete, you can invoke the design utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, finish the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build innovative options utilizing AWS services and accelerated calculate. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the inference efficiency of big language models. In his complimentary time, Vivek enjoys treking, viewing movies, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about constructing options that help clients accelerate their AI journey and unlock company worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: aleishabaldwin/inamoro#29